Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Biol. Res ; 51: 49, 2018. tab, graf
Article in English | LILACS | ID: biblio-1011393

ABSTRACT

BACKGROUND: Antarctic bryophytes (mosses and liverworts) are resilient to physiologically extreme environmental conditions including elevated levels of ultraviolet (UV) radiation due to depletion of stratospheric ozone. Many Antarctic bryophytes synthesise UV-B-absorbing compounds (UVAC) that are localised in their cells and cell walls, a location that is rarely investigated for UVAC in plants. This study compares the concentrations and localisation of intracellular and cell wall UVAC in Antarctic Ceratodon purpureus, Bryum pseudotriquetrum and Schistidium antarctici from the Windmill Islands, East Antarctica. RESULTS: Multiple stresses, including desiccation and naturally high UV and visible light, seemed to enhance the incorporation of total UVAC including red pigments in the cell walls of all three Antarctic species analysed. The red growth form of C. purpureus had significantly higher levels of cell wall bound and lower intracellular UVAC concentrations than its nearby green form. Microscopic and spectroscopic analyses showed that the red colouration in this species was associated with the cell wall and that these red cell walls contained less pectin and phenolic esters than the green form. All three moss species showed a natural increase in cell wall UVAC content during the growing season and a decline in these compounds in new tissue grown under less stressful conditions in the laboratory. CONCLUSIONS: UVAC and red pigments are tightly bound to the cell wall and likely have a long-term protective role in Antarctic bryophytes. Although the identity of these red pigments remains unknown, our study demonstrates the importance of investigating cell wall UVAC in plants and contributes to our current understanding of UV-protective strategies employed by particular Antarctic bryophytes. Studies such as these provide clues to how these plants survive in such extreme habitats and are helpful in predicting future survival of the species studied.


Subject(s)
Pigments, Biological/radiation effects , Pigments, Biological/metabolism , Ultraviolet Rays , Cell Wall/radiation effects , Cell Wall/metabolism , Bryophyta/radiation effects , Bryophyta/metabolism , Seasons , Time Factors , Pigmentation/radiation effects , Analysis of Variance , Chromatography, High Pressure Liquid , Spectroscopy, Fourier Transform Infrared/methods , Plant Leaves/radiation effects , Plant Leaves/metabolism , Microscopy, Confocal , Bryophyta/cytology , Antarctic Regions
2.
Braz. j. microbiol ; 46(2): 631-637, Apr-Jun/2015. tab, graf
Article in English | LILACS | ID: lil-749708

ABSTRACT

This work addresses the production of prodigiosin from ram horn peptone (RHP) using MO-1, a local isolate in submerged culture. First, a novel gram-negative and rod-shaped bacterial strain, MO-1, was isolated from the body of the grasshopper (Poecilemon tauricola Ramme 1951), which was collected from pesticide-contaminated fields. Sequence analysis of 16S rDNA classified the microbe as Serratia marcescens. The substrate utilization potential (BIOLOG) and fatty acid methyl ester profile (FAME) of S. marcescens were also determined. The effect of RHP on the production of prodigiosin by S. marcescens MO-1 was investigated, and the results showed that RHP supplementation promoted the growth of MO-1 and increased the production of prodigiosin. A concentration of 0.4% (w/v) RHP resulted in the greatest yield of prodigiosin (277.74 mg/L) after 48 h when mannitol was used as the sole source of carbon. The pigment yield was also influenced by the types of carbon sources and peptones. As a result, RHP was demonstrated to be a suitable substrate for prodigiosin production. These results revealed that prodigiosin could be produced efficiently by S. marcescens using RHP.


Subject(s)
Animals , Culture Media/chemistry , Peptones/metabolism , Prodigiosin/metabolism , Serratia marcescens/growth & development , Serratia marcescens/metabolism , Bacterial Typing Techniques , Cluster Analysis , Cytosol/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Fatty Acids/analysis , Grasshoppers/microbiology , Molecular Sequence Data , Phylogeny , Pigments, Biological/metabolism , /genetics , Sequence Analysis, DNA , Serratia marcescens/classification , Serratia marcescens/isolation & purification
3.
Braz. j. microbiol ; 46(1): 29-39, 05/2015. tab, graf
Article in English | LILACS | ID: lil-748236

ABSTRACT

Awareness on antioxidants and its significance in human healthcare has increased many folds in recent time. Increased demand requisite on welcoming newer and alternative resources for natural antioxidants. Seaweed associated pigmented bacteria screened for its antioxidant potentials reveals 55.5% of the organisms were able to synthesize antioxidant compounds. DPPH assay showed 20% of the organisms to reach a antioxidant zone of 1 cm and 8.3% of the strains more than 3 cm. Pseudomonas koreensis (JX915782) a Sargassum associated yellowish brown pigmented bacteria have better activity than known commercial antioxidant butylated hydroxytoluene (BHT) against DPPH scavenging. Serratia rubidaea (JX915783), an associate of Ulva sp. and Pseudomonas argentinensis (JX915781) an epiphyte of Chaetomorpha media, were also contributed significantly towards ABTS (7.2% ± 0.03 to 15.2 ± 0.09%; 1.8% ± 0.01 to 15.7 ± 0.22%) and FRAP (1.81 ± 0.01 to 9.35 ± 0.98; 7.97 ± 0.12 to 18.70 ± 1.84 μg/mL of AsA Eq.) respectively. 16S rRNA gene sequence analysis revealed bacteria that have higher antioxidant activity belongs to a bacterial class Gammaproteobacteria. Statistical analysis of phenolic contents in relation with other parameters like DPPH, ABTS, reducing power and FRAP are well correlated (p < 0.05). Results obtained from the current study inferred that the seaweed associated pigmented bacteria have enormous potential on antioxidant compounds and need to be extracted in a larger way for clinical applications.


Subject(s)
Antioxidants/metabolism , Aquatic Organisms/classification , Aquatic Organisms/metabolism , Gammaproteobacteria/classification , Gammaproteobacteria/metabolism , Seaweed/microbiology , Aquatic Organisms/genetics , Aquatic Organisms/isolation & purification , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Gammaproteobacteria/genetics , Gammaproteobacteria/isolation & purification , Molecular Sequence Data , Pigments, Biological/metabolism , /genetics , Sequence Analysis, DNA
5.
Braz. j. microbiol ; 45(3): 861-872, July-Sept. 2014. ilus, graf, tab
Article in English | LILACS | ID: lil-727015

ABSTRACT

Two native Pleurotus spp. strains (white LB-050 and pale pink LB-051) were isolated from rotten tree trunks of cazahuate (Ipomoea murucoides) from the Mexican Mixtec Region. Both strains were chemically dedikaryotized to obtain their symmetrical monokaryotic components (neohaplonts). This was achieved employing homogenization time periods from 60 to 65 s, and 3 day incubation at 28 °C in a peptone-glucose solution (PGS). Pairing of compatible neohaplonts resulted in 56 hybrid strains which were classified into the four following hybrid types: (R1-n xB1-n, R1-n xB2-1, R2-n xB1-n and R2-n xB2-1). The mycelial growth of Pleurotus spp. monokaryotic and dikaryotic strains showed differences in texture (cottony or floccose), growth (scarce, regular or abundant), density (high, regular or low), and pigmentation (off-white, white or pale pink). To determine the rate and the amount of mycelium growth in malt extract agar at 28 °C, the diameter of the colony was measured every 24 h until the Petri dish was completely colonized. A linear model had the best fit to the mycelial growth kinetics. A direct relationship between mycelial morphology and growth rate was observed. Cottony mycelium presented significantly higher growth rates (p < 0.01) in comparison with floccose mycelium. Thus, mycelial morphology can be used as criterion to select which pairs must be used for optimizing compatible-mating studies. Hybrids resulting from cottony neohaplonts maintained the characteristically high growth rates of their parental strains with the hybrid R1-n xB1-n being faster than the latter.


Subject(s)
Mycelium/growth & development , Pleurotus/growth & development , Crosses, Genetic , Culture Media/chemistry , Mexico , Pigments, Biological/metabolism , Pleurotus/isolation & purification , Temperature , Trees/microbiology
6.
Braz. j. microbiol ; 45(2): 731-742, Apr.-June 2014. graf, tab
Article in English | LILACS | ID: lil-723140

ABSTRACT

Safety issues related to the employment of synthetic colorants in different industrial segments have increased the interest in the production of colorants from natural sources, such as microorganisms. Improved cultivation technologies have allowed the use of microorganisms as an alternative source of natural colorants. The objective of this work was to evaluate the influence of some factors on natural colorants production by a recently isolated from Amazon Forest, Penicillium purpurogenum DPUA 1275 employing statistical tools. To this purpose the following variables: orbital stirring speed, pH, temperature, sucrose and yeast extract concentrations and incubation time were studied through two fractional factorial, one full factorial and a central composite factorial designs. The regression analysis pointed out that sucrose and yeast extract concentrations were the variables that influenced more in colorants production. Under the best conditions (yeast extract concentration around 10 g/L and sucrose concentration of 50 g/L) an increase of 10, 33 and 23% respectively to yellow, orange and red colorants absorbance was achieved. These results show that P. purpurogenum is an alternative colorants producer and the production of these biocompounds can be improved employing statistical tool.


Subject(s)
Biotechnology/methods , Penicillium/growth & development , Penicillium/metabolism , Pigments, Biological/isolation & purification , Pigments, Biological/metabolism , Culture Media/chemistry , Time Factors
7.
Indian J Exp Biol ; 2013 Sept; 51(9): 758-763
Article in English | IMSEAR | ID: sea-149380

ABSTRACT

The cadaverine (Cad), an organic diamine was examined for its response on growth in salinity and metal stressed B. juncea cv RH-30 vis-à-vis compared the response of ammonium nitrate. The Cad (1 mM) application ameliorated the effect caused by salinity and metal stress on seed germination and plant growth. The plant growth recovery (dry biomass accumulation) was dependent on stress and diamine type. The higher growth recovery potential of Cad under both stresses was due to elevation in photosynthetic pigments, nitrate reductase activity and organic nitrogen as well as soluble protein, It is inferred that growth in stressed seedlings was mediated by Cad through lowering endogenous Cd/Pb and Na+/K+ level in leaf and shoot tissues.


Subject(s)
Cadaverine/pharmacology , Cadmium/metabolism , Lead/metabolism , Mustard Plant/drug effects , Mustard Plant/growth & development , Mustard Plant/physiology , Nitrate Reductase/metabolism , Nitrogen/metabolism , Photosynthesis , Pigments, Biological/metabolism , Stress, Physiological
8.
Indian J Exp Biol ; 2013 May; 51(5): 388-392
Article in English | IMSEAR | ID: sea-147606

ABSTRACT

The effect of UV-C radiation on thylakoid arrangement, chlorophyll-a and carotenoid content and nitrogenase activity of the cyanobacterium Microchaete sp. was studied. Chlorophyll-a and carotenoid content increased gradually up to 48 h of UV-C exposure but declined with longer exposures. Nitrogenase activity decreased moderately with 6 to 12 h exposure and decreased substantially afterwards. When cells exposed to UV-C for 12 to 24 h, grown under fluorescent light for 144 h, nitrogenase activity increased to levels greater than in the control cells. The exposure of UV-C treated cells to fluorescent light, however, did not result in recovery of pigment content. In Microchaete sp. cells treated with UV-C for 144 h, thylakoid membranes became dense, were aggregated into bundles, and were surrounded by spaces devoid of cytoplasm.


Subject(s)
Cyanobacteria/enzymology , Cyanobacteria/metabolism , Cyanobacteria/radiation effects , Microscopy, Electron, Transmission , Nitrogenase/metabolism , Pigments, Biological/metabolism , Thylakoids/metabolism , Ultraviolet Rays
9.
Indian J Biochem Biophys ; 2009 Oct; 46(5): 405-408
Article in English | IMSEAR | ID: sea-135225

ABSTRACT

Mercury is known to interact with different parts of living systems causing serious biochemical and physiological disorder. In order to know the effect of mercury (Hg2+) ion on chloroplasts, the cell free organelle are incubated in an isotonic buffer medium in presence of mercury ion. The metal ion is found to induce membrane lipid peroxidation, loss of photosynthetic pigments and degradation of proteins. Such degradation brings about a drastic modification of lipid-protein organization of chloroplasts as reflected from a blue shift of absorption peaks and lowering of chlorophyll-a fluorescence intensity. The detrimental effect of Hg2+ ion has been explained in terms of direct binding with lipid-protein complex of photosynthetic membrane. Such a binding of metal ion exposes the lipid-protein complex for an easier entry and attack of reactive oxygen species (ROS) generated during incubation of chloroplasts in light and dark, thereby resulting in higher disorganization, which is evident from cation- induced changes in absorption and emission characteristics of the organelle.


Subject(s)
Absorption , Chloroplasts/drug effects , Chloroplasts/metabolism , Darkness , Lipid Metabolism/drug effects , Lipid Peroxidation/drug effects , Malondialdehyde/metabolism , Mercury/pharmacology , Photosynthesis/drug effects , Pigments, Biological/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Stability/drug effects , Thylakoids/drug effects , Thylakoids/metabolism , Triticum/cytology , Triticum/drug effects , Triticum/metabolism
10.
Indian J Med Microbiol ; 2009 Jan-Mar; 27(1): 55-8
Article in English | IMSEAR | ID: sea-53820

ABSTRACT

Difference in expression of putative virulence factors and in antifungal susceptibility among different Candida species has raised the need for species-level identification. The close relationship of Candida dubliniensis with C. albicans has led to misidentification of C. dubliniensis isolates as C. albicans. Phenotypic tests include ability to produce chlamydospore on casein agar, colony colour development on differential media CHROM agar Candida medium and ability to form hyphal fringe on Pal's agar, have been used to differentiate these two Candida species. Fifty isolates of Candida species were recovered from various specimens (blood, urine, tissue and respiratory secretions) from diabetic and cancer patients between April and July 2007. The isolates were tested for chlamydospore production on casein agar. These were also streaked simultaneously on CHROM agar, Pal's agar and a combination of CHROM agar supplemented with Pal's agar for identification and differentiation of C. dubliniensis from C. albicans. On CHROM agar, 19 isolates were identified as C. dubliniensis, nine as C. albicans, 10 as C. krusei, nine as C. tropicalis and two as C. glabrata. One was indeterminate and later identified as C. dubliniensis. Out of the 20 C. dubliniensis isolates, 19 isolates exhibited hyphal fringe on Pal's agar. On CHROM agar supplemented with Pal's agar, 16 out of the 19 fringe-positive isolates exhibited fringe surrounding the bluish green-coloured colonies of C. dubliniensis. Additional identification tests like growth at 45 degrees C and ability to reduce 2,3,5-triphenyltetrazolium chloride were time efficient, inexpensive and easy-to-use methods for differentiation of C. dubliniensis and C. albicans isolates. CHROM agar when supplemented with Pal's agar gave definitive identification between C. dubliniensis and C. albicans.


Subject(s)
Agar , Candida/classification , Clinical Laboratory Techniques/methods , Color , Culture Media/chemistry , Humans , Hyphae/growth & development , Pigments, Biological/metabolism , Spores, Fungal/growth & development , Temperature , Tetrazolium Salts/metabolism
11.
Indian J Biochem Biophys ; 2007 Aug; 44(4): 231-9
Article in English | IMSEAR | ID: sea-26406

ABSTRACT

Human activity is causing depletion of ozone in stratosphere, resulting in increased UV-B radiation and global warming. However, impact of these climatic changes on the aquatic organism (especially marine) is not fully understood. Here, we have studied the effect of excess UV-B and visible radiation on photosynthetic pigments, fatty acids content, lipid peroxidation, nitrogen content, nitrogen reductase activity and membrane proteins, induction of mycosporine-like amino acids (MAAs) and antioxidant enzymes superoxide dismutase (SOD) and ascorbate peroxidase (APX) in freshwater (Nostoc spongiaeform) and marine (Phormidium corium) cyanobacteria. UV-B treatment resulted in an increase in photosynthetic pigments in Nostoc and decrease in Phormidium, but high light treatment caused photobleaching of most of the pigments in both the species. Unsaturation level of fatty acids of both total and glycolipids remained unchanged in both the cyanobacteria, as a result of UV-B and high light treatments. Saturated fatty acids of total and glycolipids declined slightly in Nostoc by both the treatments. but remained unchanged in Phormidium. No changes in the unsaturated lipid content in our study probably suggested adaptation of the organism to the treatments. However, both treatments resulted in peroxidation of membrane lipids, indicating oxidative damage to lipids without any change in the level of unsaturation of fatty acid in the cell membrane. Qualitative and quantitative changes were observed in membrane protein profile due to the treatments. Cyanobacteria were able to synthesize MAAs in response to the UV-B treatment. Both treatments also increased the activities of SOD and APX. In conclusion, the study demonstrated induction of antioxidants such as SOD and APX under visible light treatment and screening pigment (MAAs) under UV-B treatment, which might protect the cyanobacteria from oxidative damage caused by high light and UV-B radiation.


Subject(s)
Bacterial Proteins/metabolism , Cyanobacteria/physiology , Enzymes/metabolism , Fatty Acids/metabolism , Fresh Water/microbiology , Light/adverse effects , Lipid Peroxidation/physiology , Membrane Proteins/metabolism , Nitrogen/metabolism , Nostoc/physiology , Photosynthesis/physiology , Pigments, Biological/metabolism , Radiation , Seawater/microbiology , Ultraviolet Rays/adverse effects
12.
J Environ Biol ; 2004 Jan; 25(1): 93-8
Article in English | IMSEAR | ID: sea-113737

ABSTRACT

Duckweed (Lemna minor) a small vascular plant, grows rapidly, is sensitive to a wide variety of toxicants and is easy to culture. A method is described that measures duckweed frond growth, chlorophyll, protein and biomass content as indicator of growth inhibition. The physico-chemical analysis of anaerobically treated distillery effluent revealed high BOD (28,000 mg/l), COD (52,400 mg/l) and dark brown colour (180,000 Co. Pt.). This effluent showed high toxicity to Lemna minor after 96 h of exposure in laboratory condition. EC50 of the fronds for chlorophyll, protein and biomass was found to be 25%, however, the bacterial decolourised effluent showed reduction of BOD (87.50%), COD (84.50%) and colour (76%). Further the toxicity evaluation with Lemna minor showed toxicity reduction up to 63% for all tested parameters. The EC50 noted for chlorophyll, protein and biomass was 100% concentration of decolourised effluent.


Subject(s)
Animals , Bacteria/metabolism , Biodegradation, Environmental , Biological Assay , Biomass , Chlorophyll/metabolism , Industrial Microbiology , Industrial Waste , Pigments, Biological/metabolism , Plants/drug effects , Time Factors , Toxicity Tests/methods , Water Pollutants/toxicity
13.
Indian J Biochem Biophys ; 1996 Dec; 33(6): 471-7
Article in English | IMSEAR | ID: sea-27355

ABSTRACT

Changes in carotenoid composition, CO2 assimilation and chlorophyll fluorescence due to photoinhibition at 5 degrees C and 20 degrees C were studied in 12 day and 30 day old sorghum leaves. The old leaves had a higher violaxanthin (V) content and less beta-carotene. Photoinhibition at both temperatures caused significant increases in zeaxanthin (Z) and decreases in violaxanthin. However, in young leaves the increase in zeaxanthin was greater than the decrease in violaxanthin. In young leaves the V + A + Z pool size (A = antheraxanthin) almost doubled under photoinhibitory conditions (compared to controls) while in old leaves the V + A + Z pool remained approximately constant. After photoinhibition treatment changes in the levels of the xanthophylls were restored during a recovery period both in young and old leaves. When rephotoinhibited after a 48 hr recovery period, the young plants showed better protection against photoinhibition. We suggest that in young leaves zeaxanthin is newly synthesized under photoinhibitory conditions besides being de-epoxidized from violaxanthin and that the synthesis of V + A + Z pool is higher at 20 degrees C than at 5 degrees C in both young and old leaves.


Subject(s)
Carbon Dioxide/metabolism , Carotenoids/metabolism , Chlorophyll/metabolism , Chloroplasts/metabolism , Fluorescence , Light , Lutein/metabolism , Pigments, Biological/metabolism , Plant Leaves/metabolism , Temperature , Time Factors , Xanthophylls , beta Carotene/analogs & derivatives
14.
P. R. health sci. j ; 12(2): 129-35, jun. 1993.
Article in English | LILACS | ID: lil-176726

ABSTRACT

Based on previous findings that lens pigments and melanins share many physicochemical properties, human lens pigments and natural (hair) and synthetic melanins were submitted to oxidation with permanganate under strong acidic conditions. This procedure has been utilized for the characterization of melanins and results in the well defined products, thiazole-4,5-dicarboxylic acid (TDCA) and pyrrole-2,3,5-tricarboxylic acid (PTCA), which can be quantitated by high performance liquid chromatography (HPLC). PTCA is regarded as a marker of black eumelanins and was therefore a main component of synthetic DOPA-eumelanin and dark hair. Its identity was established by synthesis from 5-hydroxyindole-2-carboxylic acid. TDCA derives from pheomelanins and was therefore an important component of red hair and synthetic GSH-pheomelanin. TDCA was identified by its retention time relative to PTCA. The analysis of a series of cataract digests of increasing pigmentation (type I < type IV < type V) and a purified fraction of lens pigments (DE52 pigment) revealed the presence in these preparations of both PTCA and TDCA. The concentration of TDCA significantly increased with the degree of pigmentation of the digests and reached a maximum in the DE52 pigment. The TDCA/PTCA ratio was high in the lens preparations and comparable to that given by hair pheomelanin. These findings support that pheomelanin is an integral part of lens pigments. By comparing the yields of TDCA in GSH-pheomelanin and in the purified lens pigment, a 9 per cent contribution of pheomelanin to the lens pigment was estimated


Subject(s)
Dicarboxylic Acids/analysis , Lens, Crystalline/chemistry , Melanins/analysis , Pyrroles/analysis , Thiazoles/analysis , Dicarboxylic Acids/metabolism , Cataract/metabolism , Chromatography, High Pressure Liquid , Lens, Crystalline/metabolism , Melanins/metabolism , Pigments, Biological/analysis , Pigments, Biological/metabolism , Pyrroles/metabolism , Thiazoles/metabolism
15.
Yonsei Medical Journal ; : 27-32, 1990.
Article in English | WPRIM | ID: wpr-125403

ABSTRACT

We compared the pigment of melanosis coli with the pigment of Dubin-Johnson syndrome, melanin, and lipofuscin. The pigment of melanosis coli appeared similar to lipofuscin in that it stained positively with periodic acid-Schiff, oil red-0 and Victoria blue stains and revealed negative reactions to the immunohistochemical stains for S-100 protein and neuron specific enolase, but had similarity to melanin as shown by the positive reaction to Fontana-Masson stain and negative autofluorescence. The pigment of Dubin-Johnson syndrome showed the same histochemical and immunohistochemical characteristics as that of melanosis coli. The results indicate that the pigments of melanosis coli and Dubin-Johnson syndrome are identical and are variants of lipofuscin.


Subject(s)
Humans , Male , Colonic Diseases/metabolism , Comparative Study , Histocytochemistry , Immunohistochemistry , Jaundice, Chronic Idiopathic/metabolism , Melanosis/metabolism , Middle Aged , Pigments, Biological/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL